Startup Marketeer and Tech Veteran

Thomas Krafft

Subscribe to Thomas Krafft: eMailAlertsEmail Alerts
Get Thomas Krafft via: homepageHomepage mobileMobile rssRSS facebookFacebook twitterTwitter linkedinLinkedIn

Top Stories by Thomas Krafft

Recently, at one of the customer meetings, I was asked whether GridGain comes with its own database. Naturally my reaction was – why? GridGain easily integrates pretty much with any persistent store you wish, including any RDBMS, NoSql, or HDFS stores. However, then I thought, why not? We already have cache swap space (disk overflow) storage based on Google LevelDB key-value database implementation, so why not have the same for data store. Here is how easy it was to add LevelDB based data store implementation for GridGain cache – literally took me 20 minutes to do, including unit tests. The store is based on GridGain swap space, but since swap space is based on LevelDB, you essentially get LevelDB local store for your cached data. public class GridCacheSwapSpaceStore extends GridCacheStoreAdapter { private ClassLoader dfltLdr = getClass().getClassLoader();... (more)

GridGain 4.2 Released!

We are happy to announce that GridGain 4.2 is released! This release includes several new exciting feature as well as the host of performance optimizations that we’ve included. This release is 100% backward compatible with 4.x product line and we recommend anyone on 4.x version to update as soon as possible. Now – let’s talk about new features… Delayed Preloading In GridGain 4.2 we’ve introduced support for delayed preloading. Dmitriy Setrakyan wrote an excellent blog detailing this new functionality. Essentially, whenever a new node joins the grid or an existing node leaves th... (more)

In-Memory Processing as a Business Use Case

In-memory processing is becoming a business necessity in a similar way as collecting and processing ever increasing data sets (a.k.a Big Data) has become a business “must have” rather than just a simple technology in the last five years. Both of these trends are intervened in an interesting ways. Let me explain… 1. Storing Necessitates Processing The initial foray into BigData for many companies was all about storing the data and then some rudimentary processing that most of the time resulted in some trivialized analytics run on log files, purchase history, and similar type of d... (more)

Debunking DRAM vs. Flash Controversy vis-a-vis In-Memory Processing

Wikibon produced an interesting material (looks like paid by Aerospike, NoSQL database recently emerged by resurrecting failed CitrusLeaf and acquihiring AlchemyDB, which product, of course, was recommended in the end) that compares NoSQL databases based on storing data in flash-based SSD vs. storing data in DRAM. There are number of factual problems with that paper and I want to point them out. Note that Wikibon doesn’t mention GridGain in this study (we are not a NoSQL datastore per-se after all) so I don’t have any bone in this game other than annoyance with biased and factu... (more)

Micro Cloud in Your JVM: Code Example

Few days ago I blogged about how GridGain easily supports starting many GridGain nodes in the single JVM – which is a huge productivity boost during the development. I’ve got a lot of requests to show the code – so here it is (next page). This is an example that we are shipping with upcoming 4.3 release (entire source code): import org.gridgain.grid.*; import org.gridgain.grid.spi.discovery.tcp.*; import org.gridgain.grid.spi.discovery.tcp.ipfinder.*; import org.gridgain.grid.spi.discovery.tcp.ipfinder.vm.*; import org.gridgain.grid.typedef.*; import javax.swing.*; import java... (more)